New Horizons

What's New? Elimination

Susan T. Vadaparampil, PhD, MPH Moffitt Cancer Center

November 2020 was a moment in history when the world made a commitment to eliminating cancer.

Cervical Cancer is the 4th Most Common Cancer Worldwide

Globally

>600,000

women are diagnosed every year women die from cervical cancer every year

>300,000

- These numbers are expected to increase by 2030.
- Cervical cancer is **preventable**, and it can be **eliminated**.

Global Targets by 2030

90% of girls fully vaccinated with the HPV vaccine by the age of 15

90% of women with pre-cancer treated and 90% of women with invasive cancer managed

90%

70% of women screened using a highperformance test by the age of 35, and again by the age of 45

U.S. Targets by 2030

	<u>Target</u>	<u>As of 2021</u>	
Increase the proportion of females, aged 21-65, who get screened for cervical cancer – C-09.	79.2%	73.9%	
Increase the proportion of adolescents who get recommended doses of the HPV vaccine – IID-08.	80%	58.5%	
Reduce infections of HPV types prevented by the vaccine in young adults – IID-07.	8.7%	15.1%	
ople 2030 Goals			

Healthy Peo

Cervical Cancer Elimination in the United States is Within Sight

Predicted Time to Cervical Cancer Elimination in the United States

Monitoring and Tracking Goals

	Primary prevention	Secondary prevention	Tertiary prevention
Population based data	HPV and HIV prevalence; Tobacco and condom use	Screening coverage; pre-cancer incidence	Survival; mortality- to-incidence ratio
Program monitoring	HPV vaccination coverage	Screening positivity rates; treatment coverage for pre- cancers; ablative and excision treatment rates	Guideline-based management of women with cervical disease; stage at diagnosis; treatment coverage; palliative care
Policies and health system capacities	HPV vaccine in National Immunization Programs; vaccine supply and availability; vaccine cost	Availability of national screening programs; availability of pre-cancer treatments; HPV test availability	Availability of guidelines for management of cervical disease, including high-risk groups; availability of treatment; availability of specialized medical staff; Availability of palliative care medications
Cross-cutting incidence and mortality	Cumulative risk of cervical cancer	Cervical cancer incidence and mortality	Premature mortality

We Have Tools to Eliminate Cervical Cancer

Unity of Effort

The world is ready to eliminate cervical cancer.

Are we?

Thank You!

Contact information:

Susan T. Vadaparampil, PhD MPH Moffitt Cancer Center

Susan.Vadaparampil@moffitt.org

Self-Collection for Primary HPV Screening: Essential Strategy for Cervical Cancer Elimination

Dr. Francisco García

Deputy County Administrator & Chief Medical Officer, Pima County Professor Emeritus of Public Health, University of Arizona

• No financial or intellectual conflicts of interest

Learning Objectives

- Envision the impact of self-collection for primary HPV screening as a strategy for cervical cancer elimination.
- Understand how primary HPV screening/self-collection may be used to address critical gaps across vulnerable populations.

Comprehensive Cervical Cancer Prevention

The Burden of Cervical Cancer Morbidity and Mortality, and Why it is Borne by Low-Income and Communities of Color?

Service availability Immigration status Systemic obstacles Culture/language Insurance status Health literacy Geography Poverty

> HPV Type & Persistence

Vulnerable Population

Should there be a ? after color? The title seems to be more like a statement.

Suggested:

The Burden of Cervical Cancer Morbidity and Mortality and Why it is Borne by Low-Income Communities and Communities of Color

> HPV Type & Persistence

Resilient Population

Low-Income – People? Communities? ACS has centered equity as a foundational element as it steers our collective national journey toward cervical cancer elimination.

The COVID Pandemic Changes the Context for Primary HPV Screening Using Self-Collection

- ✓ Low-barrier
- ✓On demand
- ✓ Free to consumer?
- ✓ No appointment necessary
- ✓No referral needed
- ✓ Delivered in community

- ✓ At home testing
- ✓ Non-clinical settings
- ✓ Results directly to patient
- ✓ Streamlined fast-track regulatory process?
- ✓ Rapid dissemination of technology

Self-Collection: Where & When?

- Setting where self-collection should be considered:
 - Remote and frontier communities
 - Detention and other congregate housing
 - Mobile clinics
 - Community Health Worker campaigns
 - Over-the-counter purchase and mail back
- Anywhere
 - Unwilling/unable to undergo speculum examination

Comprehensive Cervical Cancer ELIMINATION!

Gracias/Thank You

Francisco.Garcia@pima.gov

One Dose

Dr. Aimée Kreimer NCI

State of evidence: Single-dose HPV vaccination

Aimée R. Kreimer, PhD October 2023

Contact: kreimera@mail.nih.gov

Talking points

- 1. Biologic plausibility underpinning single-dose HPV vaccine protection
- 2. Single-dose HPV vaccine data
- 3. Changes to global policy
- 4. Modeling
- 5. Gaps in knowledge and ongoing trials

Biologic Plausibility of a single-dose of the HPV vaccines

- Antibodies are the prime mediators of protection for L1 HPV VLP vaccines.
- Particle size (50-55 nm) and geometry (repetitive epitopes) of the VLPs are optimal for stimulating the immune system, including efficient generation of long-lived, antigen-specific antibodyproducing cells.
- Durable (>10 years) and stable antibody levels are indicative of induction of long-lived plasma cells.
- HPV virus is exceptionally susceptible to antibody-inhibition at the site of infection.
- A minimum antibody level required for protection has not been established yet.
- Low level of antibodies are protective *in vivo* (animal models).

KENYA Single-dose HPV-vaccine Efficacy (KEN SHE)

- Randomized trial of 1 dose of 9vHPV, 2vHPV or meningococcal vaccine
 - 2250 Kenyan women aged 15–20 years; 1-5 lifetime partners; HIV negative
- 1458 girls evaluated for efficacy at month 18 in mITT HPV 16/18 cohort

Arm	HPV			Incidence of Persistent Woman-yr HPV 16/18 of Follow- per 100 Up† Woman-yr	95% Cl‡		Statistical Comparisons∬				
	16/18 Incident Naive Persistent V Enrolled (mITT) HPV ((n) (n)* 16/18 (n)	Persistent HPV 16/18 per 100 Woman-yr	Lower Bound		Upper Bound	Comparison	VE (%)	95% CI (%)	P Value (Log-Rank)		
Nonavalent HPV	758	496	1	596.27	0.17	0.00	0.93	Nonavalent vs. meningococcal	97.5	81.7- 99.7	<0.0001
Bivalent HPV	760	489	1	589.38	0.17	0.00	0.95	Bivalent vs. meningococcal	97.5	81 <mark>.6</mark> –99.7	<0.0001
Meningococcal	757	473	36	527.35	6.83	4.78	9.45				

Enrollment between December 2018 and June 2021

mITT, modified intention to treat: HPV 16/18 HPV DNA negative (external genital and cervical swabs) at enrollment and month 3 (self-collected vaginal swab) and HPV antibody negative at enrollment

Barnabas, et al. NEJM Evid 2022; 1 (5) Results based on 18 months; 36 month data presented at IPVC in Washington DC

India IARC Trial: Protection after 1, 2 or 3 doses of 4vHPV <u>through 10 years</u>

Persistent HPV	Unvaccinated cohort	Single-dose default cohort	Two-dose cohort	Three-dose cohort
Women assessed	1260	2135	1452	1460
Persistent HPV 16 and 18 infections				
Observed events	32	1	1	1
Crude attack rates	2.54%	0.05%	0-07%	0.07%
Adjusted vaccine efficacy* (95% CI)	577	95·4% (85·0 to 99·9)	93·1% (77·3 to 99·8)	93·3% (77·5 to 99·7)
Difference in vaccine efficacy† (95% CI)	112		-2·0% (-20·2 to 11·3)	-1·9% (-19·4 to 12·4)

Post-hoc analysis; women vaccinated at age 10-18 years, randomized to receive 3 or 2 4vHPV doses Unvaccinated women age-matched to married vaccinated participants recruited as controls Persistent infection defined as the same HPV type detected in consecutive samples at least 10 months apart VE adjusted for background HPV infection frequency, time between date of marriage and first cervical specimen collection, and number of cervical specimens per participant

Basu, et al. Lancet Oncology 2021

Costa Rica: One dose of bivalent HPV vaccination induces stable HPV16 serum antibodies for >10 years

HPV 9-valent Vaccine Delayed Booster Immunogenicity Study (DEBS)

Plot of HPV16 antibody GMC levels by study visit for all participants, girls and boys

Slide courtesy of Dr Vik Sahasrabuddhe

ClinicalTrials.gov registration NCT02568566

Single-dose HPV vaccine impact among 17- to 18-year-old women with HIV in South Africa: the HOPE study

HPV type	Crude pr			
	Pre-vaccine sample N=157 n (%)	Post-vaccine sample N=117 n (%)	Prevalence ratio (PR) (95% CI)	
HPV 16/18	52 (33)	24 (21)	0.62 (0.41-0.94)	

Sinead Delany-Moretlwe, Dorothy Machalek, Richard Munthali, Danielle Travill, Kathy Petoumenos, Helen Rees, John Kaldor on behalf of the HOPE study group IPVC, April 2023

NIH NATIONAL CANCER INSTITUTE

Herd immunity is greater than expected

US 2018: Herd immunity for 4v HPV vaccine types among 20–24-year-old women, NHANES

FIGURE. Quadrivalent vaccine-type (4vHPV-type) prevalence among sexually experienced females aged 14–34 years, by age group, vaccination history,* and survey years — National Health and Nutrition Examination Survey, United States, 2003–2018^{†,§}

Rosenblum et al MMWR 70: 415-420, 2021

WHO SAGE recommends updating HPV vaccination dose schedules as follows

- One or two-dose schedule for the primary target of girls aged 9-14.
- One or two-dose schedule for young women aged 15-20.
- Two doses with a 6-month interval for women **older than 21**.
- Immunocompromised individuals, including those with HIV, should receive three doses if feasible, and if not at least two doses.

Organisation mondiale de la Santé

Weekly epidemiological record Relevé épidémiologique hebdomadai

16 DECEMBER 2022, 97th YEAR / 16 DÉCEMBRE 2022, 97° ANNÉE No 50, 2022, 97, 645–672 http://www.who.int/wer

Countries that switched to 1-dose HPV schedule as of April 2023

Region	Country (intro year)	WB group	Policy change	
AFR	• Cap Verde (2021)	LMIC	Switch to 1-dose, extended MAC to 14 yr old girls	
AMR	 Bolivia (2017) Guatemala (2018) Guyana (2011) Jamaica (2017) Mexico (2008) Peru (2015) 	LMIC UMIC UMIC UMIC UMIC UMIC	 Switch to 1-dose in routine programme Switch to 1-dose in routine programme Switch to 1-dose in routine programme ♀ 	
EUR	 UK (2008) Ireland (2009) Albania(2022) Netherlands (2008) Sweden (2010) 	HIC HIC LMIC HIC HIC	 Switch to 1-dose, 9 - 25 year old ♀[†]; MSM>25yr: 2 doses Switch to 1-dose, 9 - 25 year old ♀[†]; MSM>25yr: 2 doses Introduction with 1-dose in 13-year-old girls 15-26 year ♀[†] in catch-up 2-doses 15 year and older females in catch-up 2-doses 	
WPR	Tonga (2022)Australia (2007)	LMIC HIC	 Introduction with 1-dose in girls, extended MAC to 14 year Switch to 1-dose dose in routine programme Q² 	
GAVI Countries	NITAGs in several GAVI-supported countries (LMICs) have recommended 1-dose HPV schedule		 Bangladesh (2023/24) Nigeria (2023/24) + 8 more India (2023/24) 	
Slide courtesy of Dr Paul Bloem, WHO			Black: Primary target, switch from 2 (or 3) to 1-dose Blue: Secondary target, switch from 3 to 2 doses	112

Gaps in Knowledge

- Impact of HIV infection on existing HPV-vaccine-induced antibodies from a single dose
- Males (DEBS trial suggests similar immune response to 1 dose)
- Adults
- Protection at non-cervical sites (i.e.: oral and anal)
- Protection at non-mucosal sites (i.e.: genital warts)
- 1 dose for DCVM HPV vaccines (Innovax, Walvax, Serum Institute)
- Programmatically- how to monitor for breakthrough/signs of waning

More data coming: evidence into 2025

BOLD indicates randomization to 1 dose

- Durability
 - Costa Rica- followup to 20 years for immunologic endpoints
 - India- followup to 15 years with histologic endpoints
 - Tanzania- followup to 9 years immunologic endpoints
 - Kenya- followup beyond 3 years virologic endpoints
- Vaccine effectiveness (examples)
 - Thailand
 - South Africa
- Additional population subsets (examples)
 - Women with HIV- South Africa (HOPE)
 - Younger age at vaccination- Gambia- 4 to 8 yr olds (HANDS)
 - Older age at vaccination- Costa Rica, 18 to 30 (PRISMA)
- Non-cervical sites- Costa Rica, anal and oral endpoints (PRISMA)
- Non-inferiority of 1 to 2 doses- Costa Rica (ESCUDDO)

ESCUDDO, Costa Rica- Primary data available in 2024/2025

- RCT to evaluate non-inferiority of one versus two doses of bivalent and 9-valent vaccines for prevention of new cervical HPV16/18 infections that persist 6+ months
- Evaluate one dose compared to zero doses

THANK YOU

NATIONAL CANCER INSTITUTE Division of Cancer Epidemiology & Genetics

Contact: kreimera@nih.gov